الاسم:

الدرجة: • • ٤ ، المدة: ثلاث ساعات التاريخ: الخميس ٤ /١/ ٢٠١٨

الامتحان الفصلي الأول لدوام الظهــر

الفيسزيساء

(١٠ درجات لكل سؤال)

أولاً: اختر الإجابة الصحيحة:

- يصبح: $\theta_{max}=0.4 \; rad$) يصبح: يدق الثانية في حالة السعات الزاوية الصغيرة فإن دوره من أجل السعة ($T_0' = 2 s (d)$ $T_0' = 2.02 \text{ s (c)}$ $T_0' = 2.01 \, s$ (b) $T_0' = 2.2 \ s$ (a)
 - **②**. وشيعة طولها (10~cm) و طول سلكها (10~m) فإن ذاتيتها تساوى:

 $L = 10^{-6} \ H$ (c $L = 10^{-4} H (d)$

 $L = 10^{-8} \ H$ (b)

 $L = 10^{-5} H$ (a)

(٣٠ درجة لكل سؤال)

ثانيا: أجب عن سؤالين فقط من الأسئلة الآتية:

- اكتب العبارة الشعاعية لقوة لابلاس الكهرطيسية، واكتب عناصرها، و بيّن متى تكون شدتها عظمى و متى تنعدم.
- $oldsymbol{2}$. انطلاقاً من دارة تحوي مولد و مقاومة و وشيعة، استنتج عبارة الطاقة الكهرطيسية المختزنة في الوشيعة عند زيادة شدة التيار المار بها من (I o O).
 - 3. عدد العوامل التي تتوقف عليها مقاومة الهواء لحركة جسم يسقط في هواء ساكن، و اكتب العلاقة الرياضية التي تشمل هذه العوامل مع ذكر وحدة قياس كل رمز في الجملة الدولية، و متى تصبح شدتها ثابتة ؟

(٤٠ درجة لكل سؤال)

ثالثًا: أجب عن سؤالين فقط من الأسئلة الآتية:

- انطلاقاً من العلاقة $\left(\overline{\theta}\right)_{t}^{"}=-rac{mgd}{I_{\Lambda}}\left(\overline{ heta}\right)$ برهن أن حركة النواس الثقلي المركب جيبية دورانية في حالة السعات الزاوية لصغيرة، ثم استنتج عبارة دوره الخاص في السعات الصغيرة.
- فستر إلكترونياً نشوء القوة المحركة الكهربائية التحريضية بين طرفي الساق في تجربة السكتين التحريضية في حالة الدارة مفتوحة مع رسم يبيّن جهة ($ec{F}$, $ec{B}$, $ec{V}$) و توزع الشحنات على الطرفين، و بيّن متى يتوقف تراكم الشحنات على طرفي الساق.
- لا المقياس الغلفاني ذي الإطار المتحرك و انطلاقاً من شرط التوازن الدوراني، استنتج علاقة زاوية دوران الإطار الصغيرة (heta') بدلالة f 3شدة التيار المراد قياسها (I)، و اكتب قانون ثابت المقياس الغلفاني، و كيف نزيد عملياً حساسية المقياس.

(٨٠ درجة للأولى، ٥٠ للثانية، ٦٠ للثالثة، ٥٠ للرابعة)

رابعا: حل المسائل الآتية:

المسألة الأولى: ساق مهملة الكتلة طولها ($\ell=l$ m) تحمل في أحد طرفيها كتلة نقطية ($m_1=0.2~Kg$) و في طرفها الآخر كتلة نقطية المسألة الأولى: نجعل الجملة تهتز في مستو شاقولي حول محور دوران أفقي يمر منتصفها، والمطلوب: $(m_2=0.6~{
m Kg})$

- احسب الدور الخاص لهذا النواس من أجل نوسات صغيرة السعة.
 - احسب طول النواس البسيط المواقت للنواس المركب.
- نزيح النواس عن موضع التوازن الشاقولي زاوية ($\theta_{max}=90^\circ$) ونتركه دون سرعة ابتدائية ، استنتج بالرموز عبارة السرعة الزاوية للنواس $\theta_{max}=90^\circ$ عند المرور بالشاقول، واحسب قيمتها، ثم احسب السرعة الخطية لكلُّ من مركز عطالة النواس و الكتلة (m_2) عند الشاقول.

 $g = 10 \text{ m.s}^{-2}$, $\pi^2 = 10$

المسألة الثانية: نقطة مادية كتلتها (m=10 g) تتحرك حركة جيبية انسحابية سعتها (m=10 و المطلوب:

- ❶. استنتج التابع الزمني لمطال الحركة من الشكل العام باعتبار مبدأ الزمن لحظة مرورها في المطال الأعظمي السالب.
- عين لحظة المرور الأول في مركز الاهتزاز، و احسب في هذه اللحظة سرعة النقطة، و كمية حركتها ، وطاقتها الحركية.

المالة الثالثة: دارة مهتزة مؤلفة من مكثفة مشحونة و وشيعة مهملة المقاومة ذاتيتها (μH) و طولها ($10\,cm$)، فإذا كان التابع الزمنى لشحنة المكثفة ($q=10^{-5}\cos\left(10^6t
ight)$ ، والمطلوب: $oldsymbol{0}$. احسب التواتر الخاص للتفريغ المهتز.

- 2. احسب سعة المكثفة و طول سلك الوشيعة.
- 3. اكتب التابع الزمني للشدة اللحظية للتيار الكهربائي المارفي الدارة.
- 🖸 . نأخذ الوشيعة لوحدها و نمرر فيها تياراً كهربائياً شدته اللحظية (i=9-2t)، احسب قيمة القوة المحركة الكهربائية المتحرضة الذاتية بين طرفي الوشيعة . **المسألة الرابعة:** إطار مربع الشكل مساحة سطحه (16 cm²) يحوي (20) لفة من سلك نحاسي معزول نعلقه من منتصف أحد أضلاعه بسلك شاقولي عديم الفتل في حقل مغناطيسي منتظم خطوطه أفقية توازي سطح الإطار شدته (0.25~T) و نمرر فيه تياراً شدته (4~A) ، و المطلوب:
 - احسب شدة القوى الكهرطيسية المؤثرة في كل من ضلعيه الأفقيين و الشاقوليين لحظة تمرير التيار.
 - 2. احسب عزم المزدوجة الكهرطيسية المؤثرة في الإطار لحظة تمرير التيار.
 - ❸. احسب عمل المزدوجة الكهرطيسية خلال دوران الإطار و حتى التوازن المستقر.

انتھت الأسئلة